
FUNDAMENTALS OF
WEB DESIGN

THIRD NEW EDITION • UNIT 4

BY LUIS POZA

ART280 • Fundamentals of Web Design • Lakeland Univers ity
By Luis Poza; copyright 2024. This text is not to be distributed outside the LUJ design class.

CLASS TEXTBOOK UNIT 4, Chapters 13 – 15, Extras

Chapter 13: Forms
13a. Form basics ... 254
13b. The Form Tag .. 255
13c. Form Controls .. 257
13d. Other HTML5 Controls ... 262

Chapter 14: Image Galleries
14a. Older Image Galleries ... 263
14b. Simple JavaScript Image Gallery .. 264

Chapter 15: Animation
15a. Transform ... 270
15b. Hover and Transition ... 272
15c. @keyframes Animation .. 273

Extras
 Domain Registration, cpanel, & FTP .. 279
 Setting Up Your Domain ... 280
 Appendix 1: HTML Cheat Sheet ... 283
 Appendix 2: CSS Cheat Sheet ... 285

 CHAPTER 13

Page 254

Chapter 13: Forms

TECHNICAL

13a. Form Basics

HTML and CSS are not programming languages. A programming language is capable of
solving problems, carrying out sets of instructions to achieve specific tasks.

HTML builds the basic structure of a web page for the purposes of display, but it does not
directly interact with the user. CSS modifies HTML to display a greater variety of styles, but
again, it does not carry out tasks.

We have learned so far that one may use other languages, like CSS, within an HTML
document. We also learned that programming languages, like PHP and Javascript, may also
be integrated directly into a web page.

However, sometimes it is more useful and organized to put these languages outside the
HTML document, and create a new document dedicated only to that language. We did this
with CSS, in creating a stylesheet.

The same is done with programming languages; external documents, called "scripts," are
created; these scripts have only the programming language, carrying out a specific task or
tasks. Just like the HTML <link> tag calls out for the stylesheet to be used, program scripts
can be called for as well.

Using HTML, we will create a form on a web page in which a visitor can type the data. Our
form will send the data to a PHP script, which will process the data and give us a result—in
this case, it will send an email with the form's data.

CLIENT AND SERVER

Once again, let's note the difference between a "client" and a "server."

A client is software which runs on a normal computer or device used by an ordinary person.
A web browser, for example, is a client. An email program is also a client.

A server is software that stores information that people want on a network, and has the job of
delivering that data to any client which makes a request for the data.

Actions carried out on networks are usually called "client-server," in that they consist of a
program on a computer requesting data from servers.

For example, when you use a web browser, you enter a URL for a web site. When you do so,
your browser—a client—sends out a request for a web page to the address of the web page.
The server program is at that address. It receives the request, and in response, it collects the
HTML, CSS, image, and other files, and sends them back to the client. The client browser
then takes those files to create ("render") the web page display on your browser.

Similarly, when you use an email program—a client—it contacts your email server (for
example, your LUJ Mail account) and requests information on any new email which has

 CHAPTER 13

Page 255

arrived. Your email server sends the data to your email program. Again, a client-server
relationship.

PHP

PHP is a programming language of a very specific type. It is a server-side language. In
other words, PHP is a language which is run on the server, not on the client. Your browser
cannot run PHP. It can send a request to the server to run PHP; the server will run the
program, then send the result back to your browser, the client.

HTML forms can send requests to various types of programs, not just PHP, but in this class,
we will use a PHP script.

Because the PHP script is server-side, it must "live" on the server. Your computer is not a
server because it does not have server software installed. The server software is installed on
the web host, the location which has the web site "on" the Internet.

PHP scripts will not work on your computer. In fact, for security reasons, a PHP form script
will only accept input from a form which is on the same server; therefore, although you can
make and view a form anywhere, you cannot use a form until you upload it to the server
using FTP (in our case, Filezilla).

CODE

13b. The Form Tag

We begin with a very basic HTML tag:

<form>
</form>

Of course, it's not that simple. The form tag must include these attributes:

<form action="http://lujweb.com/thisone.php" method="POST">

</form>

The action attribute identifies the location of the PHP script which will be used.

The method attribute identifies what will happen. There are two basic ways of interacting:
POST and GET. (These can be typed in uppercase or lowercase.)

The GET method makes a request for data on the server using the URL string. For example,
on the Lakeland "Open College" site, when you request information about a class, it asks the
PHP script to send data on a class using a GET code:

http://www.lcjoc.com/class.php?cc=0313

In this case, "cc" is the "class code" variable, and "0313" is the course number. Notice the
question mark right after the basic URL—you have probably seen this before, right? That's
the GET method being used to send a data request to a server-side script.

 CHAPTER 13

Page 256

The POST method is used to deliver data to the server. In this case, the form data, which will
then be processed by the PHP script.

You can add a few more things in the form tag, including a request regarding autocomplete:

<form action="http://lujweb.com/thisone.php" method="POST"
autocomplete="off">

The "autocomplete" is when a form field automatically recalls previous data that was typed
into the same field. For example, when you fill in a form, and then later return to the same
form, the data you typed in previously will return.

When I give you a web page test, I turn autocomplete off so that answers previous students
gave do not appear on your test form!

Browsers can and usually do override the autocomplete-off setting when it comes to login
and password fields. Each browser allows the user to turn off this feature.

SCRIPT DATA

When we use the form tag, we are making a request to a script on a server. That script may
require special information in order to do its job. For example, in our case, we want our form
script to (a) send the form data to you in an email, and then (b) direct the visitor to a "Thank
you" page informing them that the message was sent. We are using an older script called
"PHPFormMail," which requires specific information from the form in order to work right.

To send data using a form, we usually use the <input> tag. "Input" is data sent to a program:

<form action="http://lujweb.com/thisone.php" method="post">
<input type="hidden" name="recipient" value="poza@japan.lakeland.edu">
<input type="hidden" name="subject" value="Here Is the Form Data">
<input type="hidden" name="redirect" value="http://lujweb.com/thanks/">

</form>

Notice that the input tag has certain attributes. In this case, they are:

type which type of input; in this case, "hidden" means not visible on the page
name the name is an identifier; the script knows what data is by the name
value this is the data that the script will use

In this case, you are giving the script information it needs:

1. Which address should the email be sent to?
2. What should the subject line on the email be?
3. What page should the visitor be sent to after the email is successfully sent?

These are the formal requirements to use our particular script. The script specifically requires
these input names to be "recipient," "subject," and "redirect"; if they are not named correctly,
the script will not work correctly.

If you use a different PHP script, it may require different data, with different names.

 CHAPTER 13

Page 257

13c. Form Controls

A "form control" is a way of asking the visitor for information in a form. There are many
types. The following are used specifically with the <input> tag:

text the standard one-line text box, used for names and other short data
password similar to text, but this box hides what you type as bullets
email an HTML5 control; it requires the user to input an email address
url an HTML5 control; it requires the user to input a valid URL
checkbox creates a small box which can be checked or unchecked
radio creates a round "button" belonging to a group; only one can be "on"
hidden used by the page creator to send needed information to the script
reset creates a button that will erase all data in the form; rarely used
submit creates a button that will send the form data to the script

Note that the HTML5 controls are handled differently by different browsers. Some browsers,
for example, will not allow a form to be submitted if there is not a valid email address in the
"email" type of input control. The input must have text, an @ mark, and then a domain name.

In addition to form types, you must also give the inputs a name and an id attribute. For
example:

<input type="text" name="First Name" id="firstname">

The name and id attributes are usually similar, but serve different purposes.

The name is used by the script on the server. It is the name that will appear in the email you
get when a visitor fills out the form. You can use capital letters and spaces in the name.

The id is used by CSS and programming languages to identify the specific object in the
HTML code. It can also be used to identify a location on a page for links or other purposes.

The text for name and id probably should not carry spaces; if you want to use multiple words
as a name or id, use "CamelCase," such as "MyFavoriteColor".

You can also use other attributes:

size="50" changes the width of the text box, in pixels
value="something" adds editable text in the text box
placeholder="something" shows gray text as a suggestion; disappears
autocomplete="off" turns off autocomplete for one textbox only
required="required" in some browsers, requires input for the form to be sent

The value attribute will add text which can be sent in the form. For example, when I give a
test, I ask students to fill in their LUJ email address. To help, I enter the value
@japan.lakeland.edu in the text field; all the student must do is add the user name.
However, "value" can also be used for different purposes, as in checkboxes and radios.

In contrast, the placeholder attribute shows only gray text which disappears when the visitor
begins to type anything. The placeholder text is used to explain the nature of the data, or to
give an example of data which should be input.

 CHAPTER 13

Page 258

TEXT INPUT

First name: <input type="text" name="First Name" id="firstname">

This simply asks for a bit of text to be entered into the form. It can be any kind of text,
usually one sentence or less.

PASSWORD INPUT

Password: <input type="password" name="Password" id=" password ">

This asks for a password to be input. Our form will not need one, but you should know about
this. Any text entered into this field will be hidden, shown only as bullets.

EMAIL INPUT

Email address: <input type="email" name="Email" id="email">

This asks for a valid email address to be input. In some (but not all) browsers, the form
cannot be sent until a valid email address (xxx@xxx.com) is input.

URL INPUT

Your home page: <input type="url" name="Homepage" id="homepage">

This asks for a valid web page address (URL) to be input. In some (but not all) browsers, the
form cannot be sent until a valid address (http://xxx.com) is input.

CHECKBOX INPUT

<p>
Do you have:

<input type="checkbox" name="I have" id="dog" value="a dog"> A dog

<input type="checkbox" name="I have" id="cat" value="a cat"> A cat

<input type="checkbox" name="I have" id="hamster" value="a hamster"> A
hamster

</p>

Note: the name will appear in the resulting email as the input title;

the value will appear in the email as the input response (the answer given).

In checkboxes and radio buttons, "value" is used to make the form results more clear.

The form control above will create what you can see below: a list of boxes which can be
checked. In checkboxes, none, one, some, or all can be checked at the same time.

 CHAPTER 13

Page 259

RADIO BUTTON INPUT

<p>
Which is your favorite pet?

<input type="radio" name="I like" id="dogs" value="dogs best">Dog

<input type="radio" name="I like" id="cats" value="cats best">Cat

<input type="radio" name="I like" id="birds" value="birds best">Bird

</p>

This is similar to the checkbox, except (1) the buttons are round, and (2) only one button in
a group can be selected. Notice that in this case, the name and id attributes are different:

The name identifies a group of buttons, and appears as the title in the email;

The id identifies the specific choice for the script;

The value appears in the email as the answer.

Only one button among several with the same "name" can be selected at one time. If you
click on Dog, that button will be selected; if you then click on Cat, then Dog will be
unselected and Cat will become the choice.

Here is what the email result would look like for the above checkbox & radio code:

RESET INPUT

<input type="reset" value="Reset the form!">

This button will clear (erase) all data that was filled in on the form. Note that there is no
name or id, but you can give a value, which will appear as the text name of the button.

This button is rarely used. It was included because it was believed that people might want to
change all the data in a form, but in practice, it rarely happens. Instead, this button was a
nuisance because it often was placed right next to the "Submit" button, and many people
would accidentally click it and erase all their carefully typed information!

SUBMIT INPUT

<input type="submit" value="Send the Data!">

This button will execute the form, sending the data that was filled in. Note that there is no
name or id, but you can give a value, which will appear as the text name of the button.

 CHAPTER 13

Page 260

STYLING INPUT CONTROLS

You can add CSS styles to the form controls, including text boxes, buttons, and more, so long
as they use the <input> tag. You can change the font and text properties in text boxes, and
you can style the "Submit" button to be whatever you like.

In order to do this, just create a rule with the selector input[type=oooo] as seen here:

input[type=submit] {
 border: 1px solid black;
 color: white;
 background: red;
}

There are other form controls which do not use the <input> tag:

TEXTAREA

<textarea name="comments" id="comments" cols="60" rows="4"> </textarea>

This tag creates a form control which is a multi-line text input area.

Note that you can define the size with the attributes cols and rows. The "cols" attribute sets
the width, and the "rows" attribute sets the height. One "col" is a standard-width character,
but since web fonts are usually proportional, fewer or more than that number of characters
may fit. One "row" is a line of text, so rows="4" would accommodate four lines of text.

You can enter more than four lines, but the text will begin to scroll. Most browsers create a
resize handle at the bottom right of textareas, allowing the user to freely resize them.

Alternately, you can set the width and height in CSS, using any measurement unit you wish.

An important note about the <textarea> tag: any characters, including whitespace
characters, which are between the start and end tags will be recreated inside the
textarea on the web page.

Normally, when we have a block tag, we put a space between the start and end tags. With
textarea, you would not do this anyway, as it is an inline tag. However, we now have another
reason: if you put an empty line between the tags, then one or two lines of empty space will
be added inside the textarea box.

Alternately, any text put between the two tags will also appear inside the box on the web
page. As a result, there is no need to use the value attribute for this form control—just type
the text between the tags, and it will appear.

 CHAPTER 13

Page 261

SELECT & OPTION

<p>
What class would you like to take?
<select name="I want to take" id="takeclass">

<option value="Mass Media" selected>Mass Media</option>
<option value="Anthropology of Japan">Anthropology of Japan</option>
<option value="Microeconomics">Principles of Microeconomics</option>
<option value="Web Design">Web Design</option>
<option value="US-Japan Relations">US-Japan Relations</option>

</select>
</p>

This set of tags will create a drop-down menu from which one option can be selected. The
name attribute in the select tag will be used as the title in the result, and the value of whatever
option is selected will be the value in the result.

Notice that the "value" attribute does not have to exactly match the value shown in the menu,
which is the text between the option tags.

You can add the size attribute in the "select" tag allows you to change how the menu works.
If you set the size to "1" then the menu will be a standard drop-down menu.

However, you can also set the list to have a multiple size, in which case a selection box
appears (see right). The selection box will not drop down.

There are various ways to set this:

<select size="6" ...
<select multiple="multiple" ...
<select multiple ...

If you use the multiple attribute (the "multiple" value is optional), then the default size of the
box will be 4 lines; if there are more than 4 choices, then the box will scroll.

If you set the size attribute to more than 4, then the height of the box will increase.

Note that in some browsers, if the size attribute is set to 2 or 3, the default value of 4 will be
used instead.

In all types of select menus, you can set width and height using CSS; this will override all
defaults.

Note also that you can pre-select a favored option by using the selected attribute:

<option value="Mass Media" selected>Mass Media</option>

This can be expressed as selected, or selected="selected".

If you want to be friendly to much older browsers, then selected="selected" and
multiple="multiple" is better, but the attributes without values should work anyway.

 CHAPTER 13

Page 262

13d. Other HTML5 Controls

In HTML5, new form controls were introduced. However, not all browsers support these
controls, and even the ones that do will display them differently:

Notice that Safari on a Mac in particular is "blind" to the new form types.

New controls include:

• color
• date
• datetime
• month
• number
• range
• datalist

Because these are (1) specialized, and (2) not yet universal, we will not be studying them in
this class. However, if you want to explore these, just do a search for them on the web. W3
Schools usually has very good information.

 CHAPTER 14

Page 263

Chapter 14: Image Galleries

14a. Older Image Galleries

There are various ways of doing this, of course.

THUMBNAIL TABLE GALLERY

The simplest is the most plain: have a grid of thumbnail images (smaller versions of the
images, no more than 250px wide) in a table. People click on a link, they go to a page with
the larger image. On that page, there are buttons for previous, gallery, and next. I am giving
you the site within the gallery folder.

This is the type of gallery that was popular in the 90's. It only requires a table and some links,
and then a number of individual pages with the larger images.

First, create a main gallery page with a table wide enough to hold the thumbnails (in this
example, 3x3), and then place the thumbnails in the table data cells (the <td> tags). Make
each thumbnail image into a link to a web page that will hold the larger version of the image.

Next, create an image page. This is also a table, with three rows. The first two rows, the title
and image rows, have one cell, a colspan. The last row will hold the links. It can be three or
five cells across, and the links point to the previous image's page, the main gallery page, and
the next image's page.

Then copy the image page as many times as there are images, and on each page, change the
addresses for the images and links. For example, I made the full-size pages have names
"pon01.html", "pon02.html", etc. Inside each one, I would change the img src to the correct
image, and adjust the "previous" and "next" links to work correctly.

The upside to this is that it works well. The downside to this is that it looks old-fashioned,
and it requires you to do more work, creating all the individual image display pages.

 CHAPTER 14

Page 264

14b. Simple JavaScript Image Gallery

There is a way to make image galleries with CSS, but there is a drawback to them: the images
do not stay. You can hover over a thumbnail image and a larger image appears—just like
with drop-down menus—but the larger image only remains visible as long as you hover.

Therefore, to make the kind of gallery most people are used to, we have to use JavaScript—
which is why we learned a little about JavaScript before this chapter. JavaScript allows us to
change the properties of objects that are separate from the trigger, or the “button” that a user
clicks on.

We are used to galleries where a number of thumbnails appear in a row, and when you click
on one, a larger image appears. This is what we will build.

STEP 1

Create a page that will hold the gallery. Depending on your site, it may simply be an empty
page with the same layout as other pages on that level of that site. Take special note of the
available space, in particular the width of the area the gallery will occupy.

In our current exercise, we will be working with an available space 1000px wide.

STEP 2

Decide your gallery layout. You should decide where the thumbnails will go relative to the
location in which the larger image appear. Here are two example layouts:

ou can have the thumbnails along the top, the bottom, the left, or the right. My preference,
and the layout we will do in this exercise, is to have the thumbnails appear along the left side.
If the thumbnails appear along the top, then the larger image may be down far enough that it
is not fully visible on a smaller screen; if the thumbnails are on the bottom, they might get cut
off. You can decide whatever you like when you create your own gallery, but always keep in
mind how the gallery will appear on different sized displays.

 CHAPTER 14

Page 265

STEP 3

Calculate your sizes. Determine how tall and wide your images will be, and how tall and
wide the larger image will be. Here is a basic plan for our page, 1000px wide:

In this plan, the thumbnails will be 175px wide, inside a container 200px wide by 600px tall.
The container will be set to overflow: scroll; so the thumbnails will scroll up and down. The
larger image will be 700px wide, so there will be 50px left for spacing between the elements.

STEP 4

Collect your images. The images should be all the same size and shape. If possible, all
images should be either portrait, or all should be landscape. It is possible to have a mix, but it
makes the coding and styling somewhat more difficult. In this exercise, we are using all
landscape.

We want the thumbnails to be 175px wide, and the large images to be 700px wide. This
means that first, we must collect all the images, and make sure they are at least 700px wide.

 CHAPTER 14

Page 266

They can be a little larger, but not too much. In our case, we are using images 1000 x 750
pixels, or a size ratio of 4:3.

If your images are different sizes, they must still have the same ratio. If some are wider and
some are taller, it will create an imbalance in the image sizes which will make the gallery
look worse. It is best to use an image editing program like Photoshop, Preview, or Pixlr to
resize and perhaps crop the images so they are all the exact same size and ratio.

In addition, the images should all be named similarly; in our case, pon01, pon02, etc.

STEP 5

Create thumbnails from the larger images. You should not use the large images as
thumbnails. Some people just use HTML or CSS to resize the main images to thumbnail size.
The reason this is not good is that the larger images will be too big in file size, and that will
make the thumbnails load too slowly.

Therefore, you must open all the images in an image editing program and resize them (there
are programs you can download which can batch-resize all images quickly). Again, they
should all be the same size. In my case, the 700 x 525 images resize down to 175 x 130.

Again, the images should all be named similarly; it is best that the thumbnails have the exact
same names as the larger images.

Create two new folders in your project page: small and large. Put the larger images in large,
and the thumbnails is small. When you open the folders, the files should look identical—
same names, same images. The only difference will be the size.

STEP 6

Create the layout. The gallery will appear in a single block, probably the main or the
article, depending on which you use. In this case, we are using a <main> tag.

Within the main tag, we will have two <div> tags, one for the thumbnails and one for the
larger image. The basic code will look like this:

The "slider" will hold the thumbnail images; the "imgdisplay" will show the image full size.
The class="default" will load the first image of the series automatically.

 CHAPTER 14

Page 267

STEP 7

Create CSS rules for the layout. First, since the larger image will be placed with absolute
positioning, but we want the <main> tag to be the boundaries, we must use the “absolute
capture” method. To do this, the main must be set to position: relative; which will contain
the absolute object.

Second, we must name the two <div> tags. I called the thumbnail holder the slider (because
the thumbnails will appear to slide up and down when they scroll), and the larger image
holder I called imgdisplay. Note that "slider" is a class, and "imgdisplay" is an id.

Note that I set the slider to be 200px wide and 600px tall. The padding-top is to create a small
space at the top of the thumbnail list so it does not “hit” the top of the box.

Notice that I created two different overflows: an overflow-y (vertical) which will scroll, and
an overflow-x (horizontal) which will not. If you have scrolling left & right, then a horizontal
scrollbar may appear and you may see movement left and right, which we do not want.

There is a right border only because in our layout, the slider will be the tallest element, so
that right border will hit the borders of the main at the top and bottom.

In the class .slider img we simply set the width of the thumbnails (the height will bet set
automatically), and create padding along the left. (If you wish the padding could be in the
slider div instead.)

For the div to display the larger image, in an id we set the width and height (700 x 525),
make the position absolute with 30px space from the top and 50px from the right. You can
adjust these later if you wish. The border is optional, but you must set the background-size to
700px by 525px so that the image will display exactly the right size no matter what the
original image resolution is (though the ratio must be the same!).

 CHAPTER 14

Page 268

At this point, I should explain how this gallery is going to work.

As you could see, we set up a list of thumbnails, and a div which will hold the larger picture.
The trick will be to make the larger image appear in the div when we click on a thumbnail
image. That larger image should stay visible until a different thumbnail is clicked. With just
HTML & CSS, this is not possible.

Therefore, we will use JavaScript. We will give each thumbnail a JavaScript Mouse Event
(onMouseClick) which will use the SetAttribute method. This will change the class of the
larger image div to have a background image of the image we wish.

Notice that when we styled the larger image div, we used an id (imgdisplay); that means that
there is no class, so we can use a class to just set the background image. By changing the
“class” attribute every time we click on a thumbnail, a different background image will
appear. If you do not understand this yet, it’s OK; it should become clear as we do this.

STEP 8

Create different background images using classes. Here, we will create the classes that
will be used to decide which image will be the background for the larger image div.

The .default class will be the normal background, which will be the image shown in the first
thumbnail. We will have the same background image in a class called .pic01 which will be
activated when the first thumbnail is clicked.

Next, copy and paste the .pic01 class rule as many times as you have images, and then
change the numbers of the selectors and the image names to match the image numbers.

 CHAPTER 14

Page 269

STEP 9

Create the thumbnail images. You can create one and then copy and adjust. The image tags
for the thumbnails should be placed inside the “slider” div.

To this, we will add the JavaScript onClick="imgdisplay.setAttribute('class','pic01')":

This JavaScript means that when you click the image, the tag with the id “imgdisplay” will
have a new class attribute set. The new class will have a background image matching the
thumbnail that is clicked on.

After that, just copy, paste, and change the numbers:

STEP 10

Save and view the page! You should be done!

 CHAPTER 15

Page 270

Chapter 15: Animation

15a. Transform
One trick we haven't learned yet is the transform property in CSS. This allows you to
change the appearance of objects you place in your web page.

The different effects that you can get with transform are:

transform: translate(100px,50px);

"Translate" means "move." This is similar to position: relative; and the use of the top,
bottom, left, and right properties. With translate(), you can move the object in two
dimensions: the first number (100px above) is to the right, while a negative number goes to
the left. The second number (50px above) moves the object down, with a negative number
moving it up.

Note that, like position: relative, the translate function keeps the object in the normal flow,
and just moves the visible object while the original location of the object is preserved.

transform: translate(100px,50px); object goes right and down
transform: translate(-100px,50px); object goes left and down
transform: translate(100px,-50px); object goes right and up
transform: translate(-100px,-50px); object goes left and up

transform: scale(2,1.5);

"Scale" means "resize." This is similar to changing the width and height. The numbers are for
the horizontal ("x") and then vertical ("y"). In the example above, the object will become
200% (2x) the width, and 150% (1.5x) the height.

In the case of transform: scale, the expansion goes from the center outwards in all directions,
and not to the right and down as is expected in normal flow.

Note that, like position: relative, the translate function keeps the object in the normal flow,
and just moves the visible object while the original location of the object is preserved.

transform: rotate(45deg);

The rotate function allows you to do exactly that: rotate the object. If you begin with an
image of an arrow point to the right, it is at the default of 0deg. If you set the rotate for
90deg, then the arrow will point up. 180deg is rotated to be reverse pointing left, 270deg is
pointing down, and 360deg takes you back to the start.

 CHAPTER 15

Page 271

If you set the rotate for more than 360deg, and add an animation, the object will spin 1x for
every 360deg increment. For example, if a rule says that an object is transform:
rotate(0deg); and then a hover says transform: rotate(720deg); then the object will spin
counter-clockwise two full times. You can speed up or slow down the spin by changing the
animation duration.

transform: skew(20deg, 0deg);

The skew function will tilt the object along the horizontal and vertical.

If you skew the first value (the "x" value, 20deg
above), it will skew the image horizontally, so that the
top of the object will move left, while the bottom
moves to the right; it looks a little like the object may
be falling over, but as you get up to 90deg, the width
of the object becomes extreme.

In the image at right, the skew is (20deg, 0deg). If you
skew the x more, the top keeps moving left and the
bottom keeps moving right. At 90deg, the image
disappears, and then from 91deg to 180deg the image
skews back to the original size, this time the top coming
from the right, and the bottom from the left.

Skewing the y-axis (the second value) moves the left side
up and the right side down; the transform show just below
will produce the image seen at right:

transform: skew(0deg, 20deg);

The same effect happens with 90deg making the object
disappear and then up to 180deg, the image comes back
from the other direction.

You can combine the x and y skews for various rotational
effects. It is a bit hard to use.

transform: rotate(20deg) skew(0deg,20deg) scale(1.4,2);

You can combine more than one transform, the same way you can combine more than one
image filter (see Chapter 9f).

Note: these transforms can work both with the :hover pseudo-element, and with the
@keyframes animation. The keyframes may work better, as these effects cause objects to
move and distort, and the exact hover location may be hard to keep. The @keyframes will
animate more smoothly.

 CHAPTER 15

Page 272

15b. Hover and Transition

There are two relatively easy forms of animation in CSS: using either the transition property,
or using @keyframes.

The transition property is simpler: using the :hover pseudo-class, you can make the change
between the normal state and the hover state smoothly animated.

#idname {
 position: relative;
 transition: all 0.5s ease;
}
#idname:hover {
 left: 200px;
 transition: all 1s ease 1s;
}

In the example above, an object (like an image or a div) has a relative position, which by
itself does not change anything. In the hover, you make it move by 200px from the left to the
right. Normally, this would make the object suddenly jump 200 pixels to the right if you
hover the mouse over it.

By adding the transition property, you can make the change into a smooth animation.

To make the transition work both for mouse-in and mouse-out, all you need is to add the
transition property to the original (not the hover) rule. This will animate both sides of the
hover. If you add the transition declaration only to the hover rule, then the animation will
only work on mouse-in, and not mouse-out. If you wish to have different animations for
mouse-in and mouse-out, then place the mouse-in effect in the hover rule, and the mouse-out
effect in the original rul.

Note that some changes do not work well with transition, for example font-size (it will
appear jumpy), or background image (Firefox won't do it smoothly)

In older versions of browsers, it was necessary to add the transition declaration to both sides,
the original rule and the hover; with current browsers, the transition only needs to be in the
original rule. However, you may want to put the transition in both (as shown above) so
people with older browsers will still see the animation OK. The shorthand for transitions is:

transition: <property> <duration> <timing-function> <delay>;

Property means which CSS properties will be affected. Usually, you just use all;
Duration means how long the whole animation takes; this is in seconds, e.g. 10s.
Timing function means how the animation will flow; the most-used properties:

ease (slow start, fast middle, slow end)
ease-in / ease-out (ease-in only starts slowly, ease-out only ends slowly)
linear (exactly same speed from start to end; looks less natural)

Delay means that the change will wait a number of seconds before happening, e.g. 3s.

 CHAPTER 15

Page 273

15c. @keyframes Animation

Keyframes are a bit more tricky, but they are more powerful. They do not need a trigger; you
can set them up to happen independently, on a schedule you decide. Also, they are not just
on-and-off like transitions; instead, you can program them to appear over multiple steps.

Keyframes require two parts:

1. The animation property
2. The @keyframes definition

ANIMATION PROPERTY

The animation property has these parts:

animation: <name> <duration> <timing-function> <delay> <iteration>

There are a few more, but these are enough for now. What they mean is:

name the name of the animation keyframe (it can be anything)
duration how long it lasts in seconds (e.g., 10s)
timing-function what speed the animation has at the start, middle, and end
delay how long a delay will be added before the beginning (e.g., 3s)
iteration how many times will the animation play (a number or "infinite")
direction will it alternate or reverse direction? If neither, leave this out.

In use, the animation looks like:

selector {
animation: myanimation 10s ease 2s infinite alternate;

}

This is half of the setup (the easier half). The other half is the @keyframes, which uses the
name that you set in the animation declaration.

@KEYFRAMES

The @keyframes part will tell the browser (1) what happens in the animation and (2) when it
happens.

To set what happens in an animation, the keyframe sets steps which the animation takes.
These are specific directions. They say what to do and when to do it.

If your animation has only two parts (start one way, end another way), then you can use from
and to:

@keyframes myanimation {
 from {background-color: yellow;}
 to {background-color: red;}
}

1. The @keyframes defines it as a keyframe;
2. The myanimation is the name set in the animation declaration;
3. From shows what the style is at the start;
4. To shows what the style is at the end.

 CHAPTER 15

Page 274

In this case, the background color will change smoothly from yellow to red (with orange in
between). You can, of course, use any CSS declaration—and multiple declarations:

@keyframes myanimation {
 from {width: 200px; background-color: yellow;}
 to {width: 300px; background-color: red;}
}

MULTI-STEP KEYFRAMES

Alternately, you can use percentages to show multiple steps:

@keyframes myanimation {
 0% { width: 200px;}
 15% { width: 300px;}
 25% { width: 400px;}
 40% { width: 500px;}
 60% { width: 350px;}
 100% { width: 2px;}
}

The percentages set what the state of the object will be at x% of the duration of the
animation. Each percentage statement is a “selector.”

For example, if you have an animation with a duration of 10 seconds (10s), and then you use
this animation:

@keyframes tester {
 0% { margin-left: 0px;}
 50% { margin-left: 500px;}
 100% { margin-left: 0px;}
}

The object will begin with no margin, then over 5 seconds, it will increase the left margin to
500px, making it seem like the object is slowly moving to the right. At 5 seconds, it will stop,
and then take another 5 seconds to go back to the original state.

If you want to animation to pause, just make two selectors which are the same; in the
animation below, the object will seem to move for 4 seconds, stop for 2 seconds, and then
take another 4 seconds to move back:

@keyframes tester {
 0% { margin-left: 0px;}
 40% { margin-left: 500px;}
 60% { margin-left: 500px;}
 100% { margin-left: 0px;}
}

 CHAPTER 15

Page 275

Example of Keyframe Animation

Here is an id with an animation called "jumpingout":

 #ani1 {

position: relative;
height: 200px;
width: 300px;
background-color: green;
animation: jumpingout 10s ease infinite alternate;
animation-fill-mode: forwards;

 }

@keyframes jumpingout {
 0% { left: 0px;}
 10% { left: 20px;}
 20% { left: 20px;}
 40% { left: 500px;}
 60% { left: 500px;}
 100% { left: 0px;}
}

What does this mean? It means that over a 10-second period of time, the following will
happen:

1. Between the start and 1 seconds, the object will move 20 pixels to the right;
2. Between seconds 1 and 2, the object will pause;
3. Between seconds 2 and 4, the object will move from 20px to 500px rightwards;
4. Between seconds 4 and 6, the object will pause again;
5. Between seconds 6 and 10, the object will move back to the starting place at left.

Note that I used "animation-fill-mode: forwards;" for this animation. Normally, after an
animation plays, it resets to the beginning. Adding this declaration keeps the end state.

Uses of Keyframe Animation: Fading Image Box

You can use keyframe animations for almost everything except background images. One
common use it to change the opacity of an object. At opacity: 0; the object will be
invisible; at opacity: 1; the object will be visible; using animation, it become a fade-in/out.

Therefore this following 2-second keyframe sequence will start with an image being
invisible; it will slowly become visible over 3 seconds; it will stay visible for 6 seconds; then
it will slowly fade out over another 3 seconds; then it will stay invisible for 8 seconds:

@keyframes image01 {
 0% { opacity: 0;}
 15% { opacity: 1;}
 45% { opacity: 1;}
 60% { opacity: 0;}
 100% { opacity: 0;}
}

 CHAPTER 15

Page 276

You can use this to make a rotating/fading image box:

• you can have several images inside a block container (div or figure);
• the block can be set to position: relative; so it will 'capture' the images inside of it;
• all images can be set to position: absolute; so they all will appear in the same position;
• each image will have a different id with its own animation;
• each animation will "activate" the image for a certain period of time.

For example:

0sec 5sec 10sec 15sec 20sec 25sec
| | | | | |
image 1 FADEOUT FADEIN image 1
 FADEIN image 2 FADEOUT
 FADEIN image 3 FADEOUT
 FADEIN image 4 FADEOUT

 #fader {
 position: relative;
 width: 800px;
 height: 571px;
 border: 1px solid black
 }
 #fader img {
 position: absolute;
 top: 0px;
 left: 0px;
 }

The images in the fader are absolute so they will stack on top of each other. The "fader" box
(made to be the size of the images, 800 x 571) is relative so that when you make the images
have an absolute position (top and left are 0px), they will stay inside the fader box.

 #img1 {
 animation: image01 25s ease infinite;
 }
 #img2 {
 animation: image02 25s ease infinite;
 }
 #img3 {
 animation: image03 25s ease infinite;
 }
 #img4 {
 animation: image04 25s ease infinite;
 }

Each of the above ids are for each image. the "image01" names are the names of the
keyframe animations (see next page) Each is set to a 25-second cycle.

 CHAPTER 15

Page 277

Below are the keyframe settings. Note that as each one fades to opacity: 0; the next one is
fading in. There is a little bit of overlap so that the background doesn't peek through. Note
that each animation gives the name (e.g., image01) which was set in the ids (e.g., #img1) on
the previous page.

 @keyframes image01 {
 0% { opacity: 1;}
 20% { opacity: 1;}
 30% { opacity: 0;}
 85% { opacity: 0;}
 100% { opacity: 1;}
 }
 @keyframes image02 {
 0% { opacity: 0;}
 15% { opacity: 0;}
 25% { opacity: 1;}
 45% { opacity: 1;}
 55% { opacity: 0;}
 100% { opacity: 0;}
 }
 @keyframes image03 {
 0% { opacity: 0;}
 40% { opacity: 0;}
 50% { opacity: 1;}
 65% { opacity: 1;}
 75% { opacity: 0;}
 100% { opacity: 0;}
 }
 @keyframes image04 {
 0% { opacity: 0;}
 60% { opacity: 0;}
 70% { opacity: 1;}
 90% { opacity: 1;}
 100% { opacity: 0;}
 }

 CHAPTER 15

Page 278

Another Example: Image Sliding

In this example, keyframe animations are used to make images slide over each other. This
requires a few more settings:

z-index: 10; This places objects above or below each other;
 items with higher numbers are above ones with lower numbers
overflow: hidden; This hides images as they slide out of the box

The code for this is exactly the same as the fader box, except that you add the overflow:
hidden; to the main div. The declarations in #img1, #img2, etc. are exactly the same.

In this case, each image must be on top (z-index: 100;), then it must move down (z-index: 0;)
so the next image can slide in on top of it (left: 0;); after that happens, the now-hidden image
slides out to the right and waits its turn before coming back in again. You have to carefully
think out the positions and timings to make it work right, and sometimes you need to correct
and adjust when you write the code.

The keyframe code looks like this:

 @keyframes image01 {
 0% { left: 0px; z-index: 100; } /* Starts in & on top */
 20% { left: 0px; z-index: 100; } /* Stays on top for 20% */
 25% { left: 0px; z-index: 0; } /* Move below the next image */
 35% { left: 850px; z-index: 0; } /* Slide the image out */
 95% { left: 850px; z-index: 100; } /* Wait outside */
 100% { left: 0px; z-index: 100; } /* Slide the image back in */
 }
 @keyframes image02 {
 0% { left: 850px; z-index: 0; } /* Starts out of the box */
 20% { left: 850px; z-index: 100; } /* Waits its turn */
 25% { left: 0px; z-index: 100; } /* Slide the image in */
 45% { left: 0px; z-index: 100; } /* Stays on top for 20% */
 50% { left: 0px; z-index: 0; } /* Move below the next image */
 60% { left: 850px; z-index: 0; } /* Slide the image back out */
 100% { left: 850px; z-index: 0; } /* Waits again */
 }
 @keyframes image03 {
 0% { left: 850px; z-index: 0; } /* Starts out of the box */
 45% { left: 850px; z-index: 100; } /* Waits its turn */
 50% { left: 0px; z-index: 100; } /* Slide the image in */
 70% { left: 0px; z-index: 100; } /* Stays on top for 20% */
 75% { left: 0px; z-index: 0; } /* Move below the next image */
 85% { left: 850px; z-index: 0; } /* Slide the image back out */
 100% { left: 850px; z-index: 0; } /* Waits again */
 }
 @keyframes image04 {
 0% { left: 0px; z-index: 0; } /* Starts the box below img1 */
 10% { left: 850px; z-index: 0; } /* Slide the image out */
 70% { left: 850px; z-index: 100; } /* Waits its turn */
 75% { left: 0px; z-index: 100; } /* Slide the image in */
 100% { left: 0px; z-index: 0; } /* Stays on top for 20% */
 }

 EXTRAS

Page 279

Domain Registration, cpanel, & FTP
1. Go to namecheap.com
2. Click "Sign up"
3. Choose a username (can be anything); write it in the space below
4. Choose a password (use letters, numbers, capital letter, symbol);

 write it down in the space below so you won't forget!
5. Fill out the rest of the form, un-check the "sign me up" option
6. Click "Create Account and Continue."
7. Keep that tab open; go to a new tab, and go to nc.me
8. Type in the name of the domain you want, click "Search."
9. When you find a name that is available, click "ADD"
10. Click "Complete order"
11. On the next page, near the bottom, enter your LUJ email address; click "Finish up"
12. In a third tab, open Gmail, sign in to your LUJ Mail account
13. Open the message which is titled, "Namecheap – Please confirm your email"
14. Click on the "Verify your email" button
15. On the page saying your email has been verified, enter the username & password you

chose in steps #3 and #4, then click "Login"
16. On the confirm page, enter an address & phone number (it can be fake, or you could

use the LUJ address & phone number: 1-10-5 Yokoami, Sumida-ku, Tokyo, 130-
0015 Japan, +81-3-6240-4243, then click "Confirm Order"

17. After you get the "Thanks" page, you can go back to the first tab at namecheap.com
and check your account; if you reload, you should see the new domain appear.

namecheap.com Sign-up

Username: Password:

Username: Password:

Username: Password:

nc.me Sign-up

Domain name: .me

lujweb.com Sign-up

Cpanel address: lujweb.com/cpanel
Host: lujweb.com
User name: lujweb
Password: (see email)

 EXTRAS

Page 280

Setting Up Your Domain
In order for a web site to work, you need two things:

1. A domain name
2. A web server

The domain name will be the "shortcut" to the IP Address. The IP address is the address of
the web server. The web server computer has your web site files. The domain and the web
server connect through the DNS system.

The web server requires many things in order to function:

1. A computer which is on all the time
2. A high-speed Internet connection (including high upload speeds)
3. A static (unchanging) and dedicated (private) IP address
4. Web server software—for example, Apache
5. Someone to install and maintain the software and server

All of these can be expensive to buy and difficult to maintain. Therefore, it is much easier to
use a web host. A web host will provide all of these services for a monthly fee. For reliable
service, plans costing at least $10 a month are usually required. Lakeland College Japan has
purchased a web hosting account, and everyone is free to use it for one year.

The Process

These are the steps you need to take:

1. Change the DNS address at your domain registrar (in our case, NameCheap)
2. Add your domain using cPanel at the web host (in our case, lujweb.com on

BigScoots)

1. Change Your Domain's DNS

Begin by logging in to your account at
NameCheap. For this, you must have the
username and password you used for the
account when you created your domain
name.

Go to http://namecheap.com

In the top-left corner, there is a "Sign in"
menu item. Enter your username and
password, and then click the "Sign In"
button.

 EXTRAS

Page 281

Your account page should appear, with your domain name listed.

Click on the "Manage" button. You will see a new page:

In the list, it will say "Nameservers." Normally, this is set to "Namecheap BasicDNS." You
need to change it to "Custom DNS."

 EXTRAS

Page 282

Use the nameservers:

NS1.BIGSCOOTS.COM

NS2.BIGSCOOTS.COM

Once you change them, you have to save the changes: click the green check mark.

That's it! You're finished!

2. Add Your Domain to the lujweb.com Web Host Account

Next, you have to go to the cPanel at lujweb.com Go to:

lujweb.com/cpanel

I will send you an email with a PDF giving you the instructions on how to do this part. Since
it contains sensitive information such as the site password, I will not put that in the textbook.

 EXTRAS

Page 283

Appendix 1: HTML Cheat Sheet
TAG HTML5 ATTRIBUTES NOTES
<!DOCTYPE html> Comes at beginning of every web

page, with "html" (HTML5 rules).
* title="[tooltip text]"

style="[css decl.]"
Universal attributes; the asterisk
represents all tags.

<html> lang="en" Begins normal HTML code. Should
carry the language attribute to set
editing/proofing language.

<head> Contains document info, including
title, meta, style, link, and scripts.

<title> Contains the title for the web page,
seen in the browser title bar or tab

<style> Contains embedded CSS. Within
the style tag, CSS rules apply,
including different comment tags /*
*/

<meta> name="author"
name="description"
content="value"
charset="UTF-8"

Contains information about the
document. The name attribute sets
the type of information and is used
with the content attribute.

<link> rel="stylesheet"
href="filepath"

Is used to link to an external
stylesheet

<body> Designates the area of the code
where web page content is located.
The body & all tags inside can use
the style attribute to set CSS.

<header> Structural tag which holds the title
and subtitle of the page

<nav> Structural tag which holds the main
menu for the site

<main> Structural tag which holds the
primary content of the page

<footer> Structural tag which holds
publishing and site information

<article> Structural tag which holds primary
content specific to one page

<section> Structural tag which holds one of
many parts of segmented content
for one page

<aside> Structural tag which holds related
but not primary content for a page
or site

<div> A blank block tag
 A blank inline tag
<h1> ~ <h6> Headers, used for titles and

subtitles. Block, semantic.
<p> Paragraph tag. Basic block

element.

 Line break. A helpful variation is:

<br style="clear: both;">
<blockquote> Creates an area with 0.5 inch

indents on left and right. Can
repeat. Block, semantic (used for
quotes).

 Defines a bullet (unordered) list.
Block.

 type="A" (not universal) Defines an ordered list. Block.

 EXTRAS

Page 284

 List item; used in both ul and ol
tags.

<hr> Creates a horizontal line. Block
 src="filepath"

alt="Alternate Text"
width="400"
height="300"

Places an image on the page. This
is one of the few tags with many
attributes which are still allowed
instead of CSS.

<figure> Block container for an image.
<figcaption> Block container for image caption;

used within <figure> tag. Semantic.
<q> For inline quotes; adds quote

marks
 Makes text bold.
 Makes text bold (semantic).
<i> Makes text italic.
 Makes text italic (semantic).
<sub> Creates superscript text (x2).
<sup> Creates subscript text (H2O).
<table> Creates a table
<tr> Creates a table row
<td> Creates a table cell / column
<thead> <tbody> <tfoot> Creates sections of a table so each

can be formatted separately
<caption> Defines a table caption
<form> action="global-filepath"

method="post"
autocomplete="off"

Creates a form. The "action" sets
the page or script that the form
data will be set to; "method" sets
the way the data will be sent

<input> type="text"
name="yourchoice"
id="yourchoice"
value="yourtext"
placeholder="yourtext"
autocomplete="off"
maxlength="40"
autofocus
required

Creates one of various input fields
in a form where the visitor can
input data or choices. The name
attribute will become the "holder" or
variable name which is related to
the data; the id can be used for
styling or for certain purposes in
scripts. Value will insert editable
text into the form field, while
placeholder will insert greyed text
which cannot be edited and will
vanish when text is typed.

<textarea> size="40" Creates a multi-line text input field.
Any text, including whitespace,
within the start and end tags, will
be placed into the field.

<select>
<option>

 Create a drop-down menu; select
creates the menu, each item in the
menu is set by an option.

<fieldset> Creates a bordered rectangle
around parts or the whole of a
form.

<!-- --> Adds comment to code; will not be
displayed in browser. Can be used
to temporarily "disable" or hide
existing tags.

<iframe> scr="filepath" Creates a window in which another
HTML file can be displayed.

 EXTRAS

Page 285

Appendix 2: CSS Cheat Sheet
FONT & TEXT PROPERTIES
Property Values NOTES
font italic bold 18pt/30px

'Georgia', serif;
Allows for multiple values for font properties in
one line. The example value gives style,
weight, size, line-height, and font-family.

color red;
rgb(255,0,0);
rgba(255,0,0,0.8);

Sets the font color. Can use any of the
methods shown at left.

font-size 14pt; Sets font size using any measure (pt, px, cm,
mm, in, %, em, etc.). Default font size is 12pt.

font-family 'Arial Narrow', 'Franklin
Condensed', 'Open Sans
Condensed', sans-serif;

Default font is Times New Roman. This sets
fonts in order of availability. It should be
ended with a font category matching the listed
families.

font-style italic;
oblique;

Sets style, primarily italic.

font-weight bold;
none;
700;

Sets font weight, usually bold or none. If
number weights (100-900) are available, they
can be used.

font-variant small-caps; Creates small caps style.
text-align center;

left;
right;
justify;

Aligns paragraph text within a block area.

text-decoration underline;
none;

Allows you to add or subtract an underline.
Most commonly used to remove underlines
from links.

text-indent 0.5in; Sets left indent using any measure (pt, px,
cm, mm, in, %, em, etc.).

text-transform capitalize;
uppercase;
lowercase;

text-shadow 2px 2px 3px rgba(0,0,0,0.5); Creates a drop shadow for text. The values
are, in order, [move to right], [move down],
[blur], and color.

line-height 2em; Sets line spacing using any measure (pt, px,
cm, mm, in, %, em, etc.). For example, 2em is
double spacing.

letter-spacing 5px;
2mm;

Creates extra spacing between letters in text.
Any measure will work.

word-spacing 10px;
1cm;

Creates extra spacing between words in text.
Any measure will work.

BOX MODEL BLOCK PROPERTIES
Property Values NOTES
margin
margin-top
margin-right
margin-bottom
margin-left

20px;
20px 30px;
20px 30px 10px;
20px 10px 15px 20px;

Sets the margin for the outside of a block
element. Margin will be ADDED to the
element size.

border 1px solid black; Allows for all border qualities to be set in one
line (width, style, color).

border-width
border-top-width
border-right-width
border-bottom-width
border-left-width

2px;
2px 3px;
2px 3px 1px;
2px 1px 1px 2px;

Sets border thickness. For no border, set to
0px.

 EXTRAS

Page 286

border-style
border-top-style
border-right-style
border-bottom-style
border-left-style

solid;
dashed;
dotted;
double;
groove;
inset;
outset;
ridge;

Sets the border style. Some styles only
appear when the border width is set to 3px or
greater.

border-color
border-top-color
border-right-color
border-bottom-color
border-left-color

red;
red blue green brown;
rgb(255,0,0);
rgba(255,0,0,0.8);

Sets the color of the borders.

outline 2px solid red; Creates extra border.
outline-offset 4px; Sets distance from border to outline.
border-radius 20px;

20px 30px;
20px 30px 10px;
20px 10px 15px 20px;

Sets the rounding of corners. Instead of top-
right-left-bottom, the values are top-left, top-
right, bottom-right, and bottom-left.

padding
padding-top
padding-right
padding-bottom
padding-left

20px;
20px 30px;
20px 30px 10px;
20px 10px 15px 20px;

Sets the distance between the border and the
inside content of a block element. Usually, the
background will show beneath padding.

background pink url(bg01.jpg) no-
repeat;

Allows for multiple background styles. Order
is: background-color, -image, -repeat, -
position.

background-color red;
rgb(255,0,0);
rgba(255,0,0,0.8);

Sets the background color for the body or a
block element. Can be used for inline
elements, but not recommended.

background-image url(bg01.jpg); Sets image as background for the body or a
block element.

background-
attachment

fixed; Background will not scroll with page

background-size 300px;
300px 200px;
50%;
cover;
contain;

Sets the size of the background image. The
first number value is the width, the second is
height. If there is only one value, height is set
to auto. Cover will auto-resize the image to
always cover 100% of the background;
contain resizes to always show the full
image, even if there will be a blank margin.

background-repeat no-repeat;
repeat-x;
repeat-y

Sets how a background repeats.

background-position 50px 20px;
top center;
bottom right;

Sets the starting position for a background. If
numbers are used, the first sets the distance
from left, the second the position from top. If
words are used, it sets the alignment of the
beginning image. Default is top left.

background-origin
background-clip

border-box;
padding-box;
content-box;

Determines where and how much of a
background will appear. Border-box makes
backgrounds extend to appear under the
border; padding-box has a background fill
the padding but not extend under the border;
content-box will make the background cover
only the content, and not the padding or
border.

box-shadow 5px 5px 10px
rgba(0,0,0,0.5);

Creates a shadow for a block element. Values
are [distance right], [distance down], [blur],
and color.

 EXTRAS

Page 287

CSS Cheat Sheet
OBJECT PROPERTIES
Property Values NOTES
width 400px;

Sets the width of an object using any
measure (px, cm, mm, in, %, etc.).

height 300px; Sets the height of an object using any
measure.

min-width 600px; Sets the minimum width for a block
element that may become larger.

min-height 600px; Sets the minimum height for a block
element that may become larger.

max-width 600px; Sets the maximum width and stops the
object from becoming larger.

max-height 600px; Sets the maximum height and stops
the object from becoming larger.

overflow visible;
hidden;
scroll;

If a box's content is bigger than the
box, this sets how the extra content will
appear. Visible means the content will
spill outside the box's borders. Hidden
means that the extra content will
disappear. Scroll will allow the box to
become like a scrollable window.

opacity 0.5; Sets the transparency of an object and
everything inside it (text, image,
background, etc.). 1 means normally
visible; 0 means invisible. 0.5 will make
the object half-transparent.

position static;
absolute;
fixed;
relative;

Sets the position of an object. Static is
default. Relative will move the image
relative to its normal position.
Absolute will set the image relative to
the sides of the document (top, right,
bottom, left). Fixed will set the position
of an object relative to the window, and
the rest of the page will scroll past it.

top 40px; Sets the position of an object relative
to the top of the page or containing
block element (if absolute) or to its
normal position (relative).

right 20px; Sets the position of an object relative
to the right.

bottom 30px; Sets the position of an object relative
to the bottom.

left 25px; Sets the position of an object relative
to the left.

z-index 20; Sets the layer for the object if objects
overlap. A higher number places the
object "on top" of others. Any number
value can be used.

display block;
inline;
none;

Sets the object as a block or inline
element, or makes it disappear (none).
Used to hide objects until an action is
taken to reveal it.

float left;
right;

Sets a block element on the left or right
side of a container, all else wrapping
around it.

clear left;
right;
both;

Finds the bottom of floating objects to
the left side, right side, or both sides,
and begins below that point.

 EXTRAS

Page 288

ANIMATION PROPERTIES
Property Values NOTES
transform

translate(10px 20px);
scale(2,3);
rotate(10deg);
scale(2,3) rotate(20deg);

changes an object's position in a 2-D
or 3-D manner. Translate simply
moves the object [to the right] and
[down] by the number of pixels; scale
changes the size [horiontally] and
[vertically] by x times the size; and
rotate changes the angle of the object
clockwise by degrees. They can be
used together.

transition all 2s ease-in 1s; This is an all-in-one property for
several animation features.

transition-property width;
display;
all;

Specifies which property or properties
will be animated.

transition-duration 2s; Specifies how long the animation will
take, in seconds.

transition-timing-
function

cubic-bezier(1,0,0,1);
ease;
ease-in;
ease-in-out;
ease-out;
linear;

Specifies how the animation starts and
stops: how fast it starts, how fast it
accelerates, how fast ir slows down,
and how fast it stops. The cubic-bezier
numbers (0-1) set the speeds in a
complex pattern.

transition-delay 2s; Specifies how long before the
animation begins.

OTHERS
Property Values NOTES
list-style Allows the type, position, and/or image

to be listed in one line.
list-style-type none;

circle;
disc;
square;
lower/upper-latin;
lower/upper-roman;
lower/upper-alpha;
hiragana(-iroha);
katakana(-iroha);
cjk-ideographic;
decimal(-leading-zero);

Specifies the type of ordered list. Use
this instead of the type attribute!

list-style-image url(filepath); Sets an image as the bullet in an
unordered list.

list-style-position inside;
outside;

Outside means the number or bullet in
a list stands out to the left of the list;
inside means it does not.

clip rect(0px,400px,300px, 50px); Crops an image. The values are: [cut
from top], [cut from right starting x
pixels from the left side], [cut from
bottom starting x pixels from the top
side], [cut from left].

cursor crosshair;
help;
move;
pointer;
text;

Sets the cursor type when hovering
over the affected area. Additional
cursors include url and wait.

visibility hidden;
visible;

Makes something invisible, but it still
takes the same space.

 EXTRAS

Page 289

